

Community Mobility Resilience Plan PUBLIC WORKSHOP #1

February 13th, 2020

District 56

Meeting Overview

- Welcome, Introductions, and Agenda review
- Overview of Community Mobility Resilience Plan
- Analysis and anticipated flooding, heat, and fiscal impacts
- Small group discussion of impacts and resiliency strategies
- Reports from small groups
- Review action items and next steps

Community Mobility Resilience Plan Overview

Project Purpose

 The plan will develop detailed actions, funding strategies, and partnerships to respond and adapt to the local impacts of climate change on the transportation system and its associated impacts.

Community Mobility Resilience Plan Overview

Project Process

- Impacts addressed through working groups and white papers:
 - Precipitation and flooding impacts
 - Heat-related impacts
 - Fiscal impacts of changing mobility landscape
- Community Resilience Task Force established for assistance during plan implementation

Community Mobility Resilience Plan Overview

Project Timeline

Analysis & Anticipated Impacts

Adaptation Planning Process

- California Adaptation
 Planning Guide
 - Vulnerability Assessment
 - Adaptation Strategy Development
- Using FHWA and Caltrans Guidance as well
- SACOG Adaptation Plan

Cal-Adapt and Emissions Scenarios

- Analysis uses Cal-Adapt data
- Includes local climate change affects in California
- Uses global climate modeling
- Uses "downscaled" model outputs to project local impacts

olore projected changes in Annual Average Maximum Temperature, An Precipitation through end of this cent	nual Average Minimum Temperature and Annual " tury for California.
EXPLORE ABOUT	
	PERATURE
Save Chart 1	Download Data SCENARIOS
Precipitation) American River Basin nissions continue to rise strongly through 2050 and plateau around 2100 (RCP 8.5) nge of annual average values from all 32 CA downscaled climate models Modeled Data (2006-2099) CA downscaled climate models	RCP 4.5 Emissions peak around 2040, then decline RCP 8.5 Emissions continue rise strongly throug 2050 and plateau around 2100
Modeled Variability Envelope © CNRM-CM5 © Observed Data (1950-2005) ■ MIROC5	QUICK STATS
50	Historical Annual Mean for 1961–1990
45	
40	2070–2099
30	24.0
25	Change Lo
20	A State State
	N M
5	and the second second
1080 1020 2000 2020 2040 2080 2020	

Extreme Heat Assessment

Extreme Heat Days and Heat Waves

Extreme Heat Days and Heat Waves

Extreme Heat Indicator	Historic (1961-1990)	Near Term (2020-2040)	Mid Term (2040-2070)
Annual Extreme Heat Days above 103°F	4	15	24
Annual Heat Wave Event Frequency	0.2	1.6	3.1
Average Heat Wave Duration (Days)	2	5.3	7

Midterm (2040 – 2070)

Change in Max Temperature in Sacramento County

Source: Cal-Adapt 2019

Timing of Extreme Heat Days

Timing of Extreme Heat Days

- Increase in frequency of extreme heat days
- Increased exposure in August and September
- Two days per year above 111°F by 2050

Source: Cal-Adapt 2019

Heat Impacts

Urban Heat Island Impacts

- Increased daytime and nighttime temperatures
- Decreased ability for nighttime cooling
- Increased energy demand for cooling
- Impaired water quality
- Decreases in air quality

Heat Impacts

Transportation Impacts

- Asphalt rutting and buckling
- Rail buckling and potential for train derailment
- Transit vehicles overheating
- Thermal expansion of bridge joints
- Decreased comfort for walking and biking

Heat Impacts

Population Impacts

- Health risks from ozone and particulate air pollution
- Heat-Related Illnesses
- Increased risk for vulnerable populations including seniors, youth, and unhoused

Community Impacts

- Emergency services and hospital room visits
- Increased energy demand for cooling

Recommended Heat Resilience Strategies

Strategy Categories

- A Resilient Roadway Network
- A Climate-Smart Electricity Grid
- A Climate-Ready Community
- A Resilient Built Environment
- A Resilient Transportation System
- Social and Economic Resilience

Flooding Assessment

Flooding Exposure

Change in frequency of extremely wet seasons 1935 to 2085

- Increase in frequency of November–March precipitation levels exceeding historic
- Impacts from large storm events projected to increase

Source: Swain et al. 2018

Flooding Exposure

- Increase in November March precipitation levels exceeding historic
- Small increases in small storm events may affect localized flooding
- Increase in intensity and impacts from large regional storm events projected

Flooding Impacts

Stormwater Drainage Impacts

- Drainage overflows
- Clogged drains with debris

Transportation Flooding Impacts

- Asphalt stripping
- Concrete corrosion
- Subbase erosion
- Route closures
- Rail and railway roadbed damage

Flooding Impacts

Population Impacts

- Increased flooding risk for residents in and near flood zones
- Potential increases in property damage

Community Impacts

- Potential disruption of signal operations
- Travel delays
- Increased need for emergency services

Recommended Flood Resilience Strategies

Strategy Categories

- A Resilient Stormwater Management System
- Climate-Smart Green Infrastructure
- A Climate-Ready Community
- A Coordinated Regional Flood Management System
- A Resilient Transportation System
- Social and Economic Resilience
- An Adaptive Flood Management Strategy

Fiscal Assessment

Vehicle-Related Revenue

What's down the road?

Increasing Utility Usage

Methodology

Existing Trends

- Vehicle Fleet Size
- Vehicle Miles Traveled

Electric Vehicles

- Vehicle Purchasing
- Fuel Consumption
- Electricity Consumption

Scenario Development

Model Output

Revenue per Household

Recommended Fiscal Resilience Strategies

State Strategies

• Vehicle Miles Traveled Tax

Local Strategies

- Congestion pricing
- Form-based zoning
- Parking meters
- Reduced parking requirements
- TNC Tax

Strategies for Additional Study

- Parcel Tax
- Sales Tax increase
- Utility Users Tax increase

Questions?

Small Group Discussions

Reports from Small Groups

Next Steps for the Plan

- Three white papers released in February
 - Comments and feedback
- Second Public Workshop in Summer 2020
- Draft Plan released in Late Summer 2020
- Interested in Community Resilience Task Force process?

Thank You!

